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ABSTRACT

D. crete renewal processes, until recently, havc not Lc en applied

to the mathematical modelling of physical processes. Analyses of such

renewal processes have proceeded on the basis of generating funcuCions

but the re3ults are often too complicated to be of ue. This paer

presents an alternative approach to discrete renewal theory an( cal-

culates many of the more complex statistics of such processes.
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I• INTRODUCTION

A renewal process is one in which events occur at time t ac-]

cording to the behavior of some underlying stochastic mechanism.

When the event occurs, the stochastic mechanism is renewed (i.e., re-

placed by a new mechanism, identical to, but statistically independent

of, the previous ones. )

The mathematical analysis of reliability and queuing problems

has resulted in a great deal of literature devoted to continuous time

renewal theory (i.e., the events can occur at any time). Aside from

the volumes devoted to the applications of the theorV, virtually all

books on stochastic processes devote at least a section, if not a

chapter, to its discussion.

Discrete time renewal processes (i.e., The events can occur at

only fixed times) have, unfortunately, not enjoyed such i wide ex-

posure either by virtue of their apparent intractability or tbr lack

of an obvious application. Recently, however, applications" 2 have

arisen wherein a discrete time renewal process appears to be quitL

useful. To be specific, the error process in digital communication,

systems has been modelled by a discrete tii, renewal process. Anotic!,

prceess being modelled by a renewal process, at Bell Telephone Labo-

r toriet, is the typing of characters on teletypewriters. This ldttt.

application is quite important insofdr d- efficivitt cumnuiiicatior

",stems are being sought for the remote programming of timk2-JhoreJ

coiri put irs .*

'While present typewriters are bosically asynchronous, new Bell Sy trr
models will operate in a synchronous manner.
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The discrete time renewal process would, no doubt, be quite use-

ful in the modelling and analysis of those systems in which events

were fixed to occur at specific instants in time. The growth of digi-

tal technology has fostered the creation of such systems in ccmmuni-

cations and automata. It is the purpose of this paper*, therefore, to

investigate the statistics of such prccesses in ordeir to facilitate

their use in practical problems.

The statistical mechanism governing the renewal events can be

described in the following manner. Consider the non-negative random

variable X, which for the purposes of discussion, is called the fail-

Lire time of a component. This variable is the length of time between

renewal events. The distinction between the continuous time and the

discrete time theory is made as follows:

(a) The random variable has a continuous distribution over the

range (0,-), its distribution being determined by a proba-

bility density function, f(x). This is the continuous case

and is discuss , in great detail by Cox 3 and will not be

examined here.

(b) There is a constant, T, such that the only possible values

of X are (T, 2T, ... ). The process is dze,'Lmined by it

gap length distribution, p(j), which ds the probability

that X =jT. This latter rage is the discrete r -.,wzl ,ror-

ess. Fller4 ' 5 devotes a far from insignificant portion oi

his books to this theory, but hi work lot- not lcinJ it-

self to practical (,,.g., actually calculating number':) u; -

plica* ions.

The approach tukon by Feller, as well as Haight', has btcri

to use the generating function of X. Thi- paper will pr,_-

sent an alternative way of looking at discrete time rerrwol

processes and, in particular, will present reti,ivtcly irl

expressions for some of the moru complicatei stotitic: )f

such proces ses.•

:t*L work on this paper was done in the period March-June 1<) O .
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II. ELEMENTARY STATISTICS

The discrete renew-l process, by definition, has gaps (length of

time between failures) whose lengths are independent and are distrib-

uted according to a common distribution. Let p(j) be the probability

that following a failure, the next failure occurs at jT. For ease of

description, a trial is said to be made at every T. That is, p(j)

P(O j - il) where 1 denotes a failure, 0 denotes a non-failure* and 0,

corresponds to i successive zeroes. The gap length distribution had

the following properties:

p(J) (1)
Ep(j)

j=l

and that the average failure rate, Pl, is equal to the ciprocil .1

the average distance between failures.

linE{FbI = IjpIj T( )l )
AT,' a lterna tive ', v ini t i cn of fai I ,t t

*A non--ailurt- will also be caile! a ,,ccets.

[I
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Let

Q(m) =£ p(J) (3)
j=m+l

That is, Q(m) is the probability of there being at least m consecutive

successes following a failure. Now, consider the event where there
are m sugcesses before a failure (i.e., 0m1 ). The probability of this

event is

mp(0ml) = PI'PI Z: P(J) = Pl Q(M) (4)

Note that P(O m1) = P(I 0m). This facilitates the calculation of the

probability of srne rather complicated events.

In many applications, the probability of m failures out of n

trials, P(m,n), is important.* This is often called the counting sta-
tistic. Elliott7 has developed an equation for P(m,n) for a renewal

process.

n-m+l
P(mn) = PlQ(j-I) Z(m,n-j+l) 1:!m!n (5)

j=l

where R(m,n) is the probability that m-i failures occur in the n-i

trials following a failure. Therefore, R(l,n) = Q(n-l) for n ! 1 and

n-m+l

R(m,n) = E p'j) R(m-i, n-j) 2!mgn (6)

j=l

"This probability assumes no knowledge of the failures in the trials
preceding the n trial sequence under investigation.
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It i to be noted that P(m,n) can be expressed in terms of p, ind

p(j), for j < n. Several of the abovw parameters and distribuition'.

are analogous to those in continuous time renewal processes. For

ample, p(j) f f(x) and p 1 ; "

It is at this point that it is worthwhile to compare the sie: lie-

ity of the above expressions with thcse available through the use

generating functions. Let g(z) and G(z) be the generating function-

associated with p(j) and Q(j), respectively. That is,

g(z) : = p(j) z ')

and

j=l

F,'om Euatio "

L,, t ir'!

<{, '- I) " ' .. c



nm(z =P[-z T g wz im' ' (12)

Calculation of P(m,n), as Elliott puts it, is rather inconvenient when

coipared to Equation 5. Generating functions do turn out to be quite

useful for certain problems in renewal theory, but it is noted that

thc recurrence equation approach for P(m,n) is ideally suited for

cawlculations done on a computer.

In addition to the gap length distribution, the "autocorrelation"

of the failures is often quite useful. The autocorrelation, a(j), is

defined as the probability that, following a failure, a failure occurs

at X "-iT. For a renewal process, however, the autocorrelation can

be derived from the gap length distribution.

j-1
a(j) = p(j) + E p(s) a (j-s) for j>l (13)

s=l

where a(l) = p(l) and a(O) = 1. Therefore a renewal process can be

fc7cribed by p(j), a(j) or P(m,n). Feller 4 has also proven that

j a(j) = p

A renc-:al proces3 c in-erest is one in which

+ = j ali 8 < 1 (14)

This is thQ autocorrelation Gilbert 8 obtains in his Markov model. It
happens that this simple model generates a renewal process while the



Berkovits 9 model, which has the same autocorrelation, i not a renewal

process.* For a renewal process with this autocorrelation, and if

P1 
< < e j for j S N, then

a(j) c(1)

From Equation 13

p(j) = a8J(l-a) (16"

Then if 1i,

Q(m) = -I_8(-) F  (17)

and

Rm,n) = - T-8(-.](s

Using Equation 5

() rm-ti 8n+l l_)nm 1 rn n (10)P(m~n) 2 nl

F 1-8 ( i-O) I

At this point, it is ar.Darent that a Rernonii -rocesn (i.e.,

0110 in which each trial is independent of the others) is a renewal
i~oc sWith

I(j) P

p(j) = p(l-p)j ]  , (,;)

P(m,n) 1 pra (1-p)n-m

'The tact that processes have the same iit-ocorrelations dout not implv
that ti;ey have The same gap length distributions unless they.' art both
rt :.wal processes
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III. COMPLEX STATISTICS

A. COMPOUND COUNTING DISTRIBUTION

The fact that the:>e may be a correlation between failures raises

the importance of the comuound counting statistic, P(ml,m2).m}4,N)

This probability corresponds to the following: Consider a sequence

of ruN trials, as shown in Fig. i, which are divided into N subsequencez
th

of n trials each. In the i subsequence there are m. failures1

th
The first failure in the i h subsequence is preceded by t. - 1 suc-i

ctses and the last failure is followed by a. - -.t. successes. 'TheI 1

failures are clustered in an interval of length n - a. + 1. This con-1

tinues until the last n trials where mN - failures uccur in the last

o - tN trials though not necessarily ending in d foilure. The bloLk

bars show the beginning and end of an mi failure cluster in each n

trial subsequence. To examine this case, first let S(m,n) be the prob-

ability hat (m - 1) failures occur in the (n 1) trials followinq a

failure, and that the (m - i) s t failure is at the (n - 1) s-t trial.

S(n,n) obeys the following recurrence relation

SOTm,n) = Z S(m-l, n-j) p(j)(.)

j =1

fr,) ? < in < n wher S(1,l) = 0 and S(l,n) = 0 for n > 1. R(m,ii) ini-

trolticed in Equation 5 follows directly from S(mn) since



n-m+1
R(m,n) = E E S(m,n-j+l) p(i) (22)

j=l i=j

n~ -N

FIGURE 1. Failure Sequence for Complex Counting Statistics

The general exp1ression for the compouncd counting statistic is

P(m ,!...,)mN,N) = pl .. E
'2N-1

2 3
N-11 

23
F- S (mj'n-aj+ I )-(a +t+!+ R(mN) n- +N +1)

where m. > 0. The first (N-1) pairs of summations over a. and .a,

summed as follows:

n-m.+l n-m.+l

E for 1 : j N-i

t .=i a .-=.
J 2]3

andi tne last summation is

n-mN+1

9N=l



Suppose m. 0 (i.e., a group of trials has no failures). This3
can happen in three ways:

(i) If the n trial block is the first block, omit S(m! , n-al+l)

and p(a - +K2 +1) and the associated summations and change

Q0l-1) to Q(t,+n-l).

(ii) if the n trial block is the last block, then omit the term

R(mN,n-N ) and sum the last term Pa -NI+) over

the limits m N < -.

(iii) If the n trial block is internal, omit the respective

S(m., n-a.+l) p(af-t j+j+l+) term as well as the corre-

sponding summations ovor a. and t-3+1 and change p(a. --

+.+l) to p(a. -t- +t? .+ n + 1). The above process of
3j-1 inl i

removing terms can be continued up to the point where only

one m. V 0 because Equation 23 assumes at least one renewal

event. For all m. = 0

P(O,...,O,N) = Pl i Q ( j ) )

j = Ja

B. AGING

An interesting statistic often calculated for continuous renewal

Irocesses is the age-specific failure rate. This is defined as the

probability of a failure between x and x+Ax given it has not failed up

to x. For the discrete case it is defined as he probability of a

foilu'e on the jth trial given no failures up to, and including, th

(j-l)- trial with no knowledge of the trials preceding these j trials.

Denoting it by c(j), one gets

C(J) (2.1)
m=j 1Q(m)

10



If cp(j) increases with j it is said to have positive aging and

becomes more likely to fail. Some processes have a (j) that decreases

with j. There is however a process with no aging. Tha: is, let

V(j) =X

or (25)

Q(j-l) = x Q(m)
m=j-1

m 
-I

Noting that Q(O) 1 and , Q(m) 1 yields=0 1l

x = P1

and (26)

P() = p (1-Pl)

which is obviously the Bernoulli process.

C. BURSTS OF FAILURES

A simple extension "f the previous discussion is to consider

bursts of failures. A burst of length m is defined to be m consecii-

ive trials beginning and ending -, a failure. This does not requir,

all m trials to be failures, buC unly the first and last. When c n-

sid>ring n consecutive trials, the probability of it containing I

burst of length m is denoted by B(m,n). Bursts of failtres ore o

considerable interest in many physical processes which may kbe mill<,

For example, errors in digital communications are noted to be cli. tr

(i.e., come in bursts) and error correcting coiles ark, cons rt t

deal with these bursts. It is also noted that the hittir(i of t.1,/-

writer keys, which in this case corresEponds to failtre, occuirs- in 1-1:1

The examination of bursts of failures is ther'i ore ir.iortant.
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For the process described previously

B(mn) = p1[a(m-l)] [p(n-m+l) + p(n-m+2)+...]

+ [l-p(1)] p1 [a(m-1)] [p(n-m)+p(n-m+l)+...] (27)

+...+[l-p(l)-p(2)-...-p(n-m)] p1 [a"m-1)]

The first term in the above expression corresponds to the first fail-

ure of the burst in the first of the n trials; the second term to

where the first failure is at the second trial; and the last term is

where the first failure of the burst is on the (n-m+l) st trial. This

can be compactly written as

n-m
B(m,n) = pla(m-l), Q(j)Q(ii-m-j) (28)

D. INTERLEAVING

A technique often used to overcome the effects of bursts is to

interleave the proc'ss. For examp~e, in the case of digital trans-

mission, time division multiplexing M data streams such that two dig-

its originally adjacent in any one stream are transmitted M diqits a-

part spreads a burst of errors over the M streams and makes the errors

look almost as if they were randomly distributed in any one data

stream. For the remote programming application, M parallel computer

input ports would be able to digest a burst of teletypewriter charac-

ters if each port accepted every Mt h character. The proie is now

to analyze the process obtained by examining every M trial of a dis-

cretc renewal process.

The autocorrelation of the events in the interleaved process,

a(j,M), is, obviuusly a(jM). The gap length distribution is now given

by

12

r4



j-1
p(j,M) =a(jM) - a(sM) p(j-sM) j > 1 (29)

s=l

As M gets large,

lrn a(jM) = p, (

There fu,:e

lurn p0,M) p1 p Jl (31)

and the process becomes a Bernoulli process.

E. FREEZE-O11T PROBLEMS

The freeze-out problem arises when a physical device requires a

specific time interval to digest icecorded data and cannot accept ad-

ditional data during that time interval. For example, an event occurs

randomly in time. When it occurs a "t counter" muist record some appro-

priate data. This recording period lasts, say, ni seconds (or trials)

and if another event occurs during these n seconds it goeo unrecordo('

The probability of such an event for a discrete renewal process being

unrocorued is not examined directly but rather two diftkrent mau~

ore used; the mean time to or unrecorded cvont and the probabilit:-

of at least onie unrecord,:,' event in N trials.

1 . Mean Time to Unrecorded Event

If the probability that the firs t uiirecc~rdkcd event OCCurs'! Ofl tiw

_j t trial is denoted by P., the thle mteanl time to) failUre,Ti ov

= j Pi
j=1

13



The guard space time to prevent a freeze-out is n-i trials such that

if two events occur within any n trials, then the second is not re-

cor~ed. In the analysis that follows, the signal flow graph techniques

of Sittler10 and Huggins will be used. The state diagram of Fig. 2

is obtained where:

i is the state of having at least i successes (in this case

trials in which events do not occur) before the first failure (event);

i is the state of having at least i successes since the last

failure; and

E1 is the state of having a failure but not an unrecorded event.

Then letting q(a,b) be the probability of going to state b from state

a,

i

l-p 1 r Q(m)q(I,'JT) = m=O
i-I (33)

I-p1 F Q(m)
m=O

q(iEl) i-i (34)

1-p1  Q(m)
m=O

q(i,i~i) : ~+ (M)

q(iE) .i. 1)for i n-I (l )

14
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q(i, unrecorded event) = p~~)for i - n-2 (37)

The flow graph can be reduced to that of Fig. 3. The "transmission

from start to freeze-out"t is P(Z).

Pi Z Q(m) Zm] [ 'p(j) ] (8
P(Z) =

1 , - p(j) Z
j =n

If P(Z) were expanded as

P(Z) P +P.Z+P Z 2 ()

the coefficient of Z' is the probability of an unrecorded event on -the

trial.

OD
:: fl

j/

____ -0~I~i

ix i

Q (Mn -W + I~j 1 ( - ~l4 4P(m).

FIGURE 3. Reduced State Flow Graph for a Freeze-Out of Counter
Requring a Guard Space of n-i



From the definition of T,

= dP(Z) (40)dZ

and therefore

1 + P m mQ(m) (41)

2. Freeze-Out in N Trials

The preceding analysis evaluated the mean time to freeze-out,

but this measure may have little significance to someone designing an

experiment to record data. As an alternative, P(N), the probability

of at least one freeze-out in N trials will be examined.

N
P(N) = L P. (42)

where

dZJ' Z=0 (43)

The complicated nature of P(Z) precludes this approach.

Another technique is to calculate P. directly. For j n + 1,3 .th
,the only way to have a freeze-out on the 3j- trial is to hive only one

failure in the first j-1 trials. Then

17



Pi= Q(k) p1 p(j-k-1) (44)

k=O

w!,hoi the above expression has k successful trials before the first

failure. If n + 1 < j e 2n + 1, a freeze-out on the jth trial can

occur because of a failure in trials j - n + 1 to j - 1, or by two

previous failures. The probabilities are

j-2

X n Q(k) p1 p(J-k-l) (45)

3-n-2 j-n

an "d Q(k) p1 p(r) p(j-k-r-1) , respectively.
k=O r=n

Conti:,uing in this vein becomes extremely difficult when one realizes

that if in 4 1 < j ! (i + 1) n + 1 then it is possible to have m fail-

L.., prior to the failure causing the freeze-out where m = 1, ... ,

i -f 1.

An alternative approach is to work backwards. It was shown in

Equation 4 that reversing a pattern of failure does not alter the

probabilities involved. Then for a freeze-out on the j- trial, there

can be at most n - 2 successes preceding it after the previous failure.

Preceding that failure there is at ledst n - 1 successes and Eo on.
.th-

Thu probability of a freeze-out on the j-trial is now compactly ex-

pressed as
P. = n-i j-(m-l)n j-(m-2)n-rI  nr1 ... rm-2plP(ro )

r =Il r --n r2=n rm =nr1 1 2 M- 1 n

P(r) ... P(r- 1 ) Q(J-r°-rl-" '"-rm-ll) (46)

18



where in is defined above. The only exception to the above occurs

when m = i + 1 and j = in + a where 1 < a < n in which case Equation

46 becomes

a-i

Pj = ja p, Fp(n)]i p(X) Q(j-ro-l-in) (47)

r =1

Here again, as in the previous statistics, a complicated probability

is obtained in a form directly amenable to computer calculation where-

in the only data needed is p1 and p(j) for j : N - 2.

19
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